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Abstract To determine what capabilities wood-eating and
detritivorous catfishes have for the digestion of refractory
polysaccharides with the aid of an endosymbiotic microbial
community, the pH, redox potentials, concentrations of
short-chain fatty acids (SCFAs), and the activity levels of 14
digestive enzymes were measured along the gastrointestinal
(GI) tracts of three wood-eating taxa (Panaque cf. nigroline-
atus “Marafion”, Panaque nocturnus, and Hypostomus pyrin-
eusi) and one detritivorous species (Pterygoplichthys
disjunctivus) from the family Loricariidae. Negative redox
potentials (—600 mV) were observed in the intestinal fluids
of the fish, suggesting that fermentative digestion was possi-
ble. However, SCFA concentrations were low (<3 mM in
any intestinal region), indicating that little GI fermentation
occurs in the fishes’ GI tracts. Cellulase and xylanase activi-
ties were low (<0.03 U g~1), and generally decreased distally
in the intestine, whereas amylolytic and laminarinase activi-
ties were five and two orders of magnitude greater, respec-
tively, than cellulase and xylanase activities, suggesting that
the fish more readily digest soluble polysaccharides. Further-
more, the Michaelis—Menten constants (K,,) of the fishes’
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p-glucosidase and N-acetyl-f-pD-glucosaminidase enzymes
were significantly lower than the K, values of microbial
enzymes ingested with their food, further suggesting that the
fish efficiently digest soluble components of their detrital diet
rather than refractory polysaccharides. Coupled with rapid
gut transit and poor cellulose digestibility, the wood-eating
catfishes appear to be detritivores reliant on endogenous
digestive mechanisms, as are other loricariid catfishes. This
stands in contrast to truly “xylivorous” taxa (e.g., beavers,
termites), which are reliant on an endosymbiotic community
of microorganisms to digest refractory polysaccharides.

Keywords Digestive enzymes - Xylivory - Fermentation

Introduction

The consumption of wood for food is rare among animals.
Unlike the “greener” portions of plants, woody tissues are
made of cells that are dead at functional maturity and,
hence, lack the cell contents on which many herbivorous
animals thrive. Because wood is composed almost entirely
of structural polysaccharides (e.g., lignocellulose), it is con-
sidered to be nutrient poor (Karasov and Martinez del Rio
2007). Thus, many wood-eating, or xylivorous, animals
(e.g., lower termites, beavers) require the aid of symbiotic
microorganisms in their gastrointestinal (GI) tracts to digest
cellulose and make the energy in this compound available
to the host (Prins and Kreulen 1991; Vispo and Hume
1995). Indeed, xylivorous animals possess an expanded
hindgut or cecum in which microbes reside and produce
cellulolytic enzymes to aid in the digestion of woody mate-
rial (Prins and Kreulen 1991; Vispo and Hume 1995; Mo
etal. 2004). Because the conditions in this expanded
hindgut are typically anaerobic, microbial endosymbionts
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operate under fermentative pathways, reducing glucose
(and other monomers) to byproducts called short-chain
fatty acids (SCFAs; e.g., acetate), which are then absorbed
by the host animal and used to generate ATP (Bergman
1990; Karasov and Martinez del Rio 2007).

In 1993, Schaefer and Stewart described several new
species as part of a lineage of neotropical catfishes, genus
Panaque, which may possibly be xylivorous. The enlarged
teeth these animals use to scrape wood from the surface of
fallen trees in the river, and the presence of wood as the
“only macroscopic material” in the fishes’ GI tracts
intrigued the authors (Schaefer and Stewart 1993). Further-
more, xylivory evolved twice in loricariid catfishes, as a
clade in the genus Hypostomus (Armbruster 2003) is recog-
nized as wood-eating in addition to the Panaque (Fig. 1).
Both xylivorous clades are derived within the phylogeny,
but little is known of the digestive physiology of these
fishes, and whether they can digest cellulose from wood.

The xylivorous catfishes belong to the Loricariidae, a
diverse catfish family (680 described species in 80 genera)
endemic to the neotropics (Armbruster 2004). The diets of
relatively few species of loricariids are known (Delariva
and Agostinho 2001; Pouilly et al. 2003; de Melo et al.
2004; Novakowski et al. 2008; German 2009b) and appear
to include animal, plant, and detrital material from the
benthos. Loricariids are known to consume morphic (e.g.,
wood) and amorphic (i.e., unidentifiable colloidal material)
detritus (German 2009b). It is clear, however, that these
fishes have undergone evolutionary rearrangements of jaw
structure, allowing for diversity in feeding modes and tro-
phic specialization (Schaefer and Lauder 1986; Lujan

Fig. 1 Partial phylogenetic
hypothesis for three tribes in the

2009). Furthermore, loricariids have long, thin-walled
intestines (Delariva and Agostinho 2001; German 2009b),
which suggests that they have high levels of intake of low-
quality food (Sibly and Calow 1986; Horn and Messer
1992; Karasov and Martinez del Rio 2007), such as detritus
(Araujo-Lima et al. 1986). High intake equates to rapid gut
transit and little endosymbiotic fermentation (Stevens and
Hume 1998; Crossman et al. 2005; Karasov and Martinez
del Rio 2007; German 2009a).

Nelson et al. (1999) examined digestive enzyme activi-
ties and cultured microbes from the GI tracts of Panaque
maccus, and an undescribed species of Pterygoplichthys
(formerly Liposarcus; Armbruster 2004), both of which
they obtained via the aquarium trade. Nelson et al. were
able to isolate aerobic microbes with cellulolytic capabili-
ties from the guts of the two species and measured cellulase
activities in the fishes’ GI tracts. From these results, Nelson
et al. (1999) concluded that loricariids possess an endosym-
biotic community in their guts capable of digesting cellu-
lose under aerobic conditions. Conversely, German (2009b)
showed that Panaque nigrolineatus and Pterygoplichthys
disjunctivus passed wood through their guts in less than 4 h,
could not assimilate significant amounts of cellulose from
wood and, hence, did not thrive on a woody diet in the lab-
oratory. What is clearly needed is an analysis of digestive
tract function to better understand the digestive strategy of
the wood-eating catfishes. Do these catfish GI tracts
function more like those of other xylivorous animals
(Breznak and Brune 1994; Vispo and Hume 1995; Felicetti
et al. 2000), with some mechanism for slowing the flow of
digesta and allowing microbes to ferment refractory

catfish family Loricariidae
(Armbruster 2004). Phylogeny
based on parsimony analysis of
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polysaccharides (Clements and Raubenheimer 2006; Karasov
and Martinez del Rio 2007), or are their guts more similar
to those of other detritivorous fishes (Horn and Messer
1992; Crossman et al. 2005; German 2009a), with rapid gut
transit, a reliance on endogenous digestive mechanisms
and, hence, little digestion of refractory polysaccharides?

These divergent digestive strategies not only feature
differences in digesta transit rate and gut morphology, but
also involve completely different profiles of digestive
enzyme activities and SCFA concentrations along the gut
(Horn and Messer 1992; Jumars 2000; Crossman et al.
2005; Skea et al. 2005; Skea et al. 2007; German 2009a).
For example, an animal reliant on hindgut fermentation
would be expected to have high concentrations (>20 mM,;
Choat and Clements 1998) of SCFAs in its hindgut (Vispo
and Hume 1995; Mountfort et al. 2002; Crossman et al.
2005; Pryor and Bjorndal 2005) and high activities of
microbially produced digestive enzymes in this gut region
(e.g., cellulase, Potts and Hewitt 1973; Nakashima et al.
2002; Mo etal. 2004). On the other hand, detritivorous
fishes reliant on endogenous digestion show decreases in
digestive enzyme activities distally in their intestines, low
SCFA concentrations, and no pattern of SCFA concentra-
tions along their GI tracts (Smith et al. 1996; Crossman
et al. 2005; German 2009a).

In this study, we examined digestive enzyme activities,
luminal carbohydrate profiles, and gastrointestinal fermen-
tation in xylivorous and detrivorous loricariid catfishes to
determine if these animals were capable of digesting a diet
rich in refractory polysaccharides, and whether they were
reliant on an endosymbiotic community to do so. Fishes
were collected from their native habitat in the Rio Marafion
in northern Perd, where xylivorous catfishes are most
diverse and abundant (Schaefer and Stewart 1993). In all,
we collected two species from the genus Panaque (P. noc-
turnus Schaefer and Stewart 1993, and an undescribed
species that we are calling P. cf. nigrolineatus ‘“Marafion”;
J. Armbruster, pers. comm.), representing the two clades of
this genus, and one species of Hypostomus (H. pyrineusi
Miranda-Ribeiro 1920) representing the other clade of
xylivorous catfishes (Fig. 1). All of these taxa are sympatric
in the Rio Marafion. Additionally, we made use of an intro-
duced population of a detritivorous loricariid, Pterygoplich-
thys disjunctivus (Weber 1991), which has been living in
Florida for nearly two decades (Nico 2005; Nico et al.
2009). This study, therefore, included both clades of xyliv-
orous catfishes and a less-derived detritivore from the same
family (Fig. 1). Thus, we were able to examine the diges-
tive physiology of closely related fishes with different diets,
and those that converged independently on a woody diet.

This study had four main components. First, we mea-
sured the pH and redox conditions along the GI tracts of the
fish to determine whether any portion of the gut would be

hospitable to an anaerobic population of endosymbiotic
microorganisms, or whether the fishes’ guts were aerobic,
as proposed by Nelson et al. (1999). Second, luminal carbo-
hydrate profiles and SCFA concentrations were measured
along the GI tract to determine where nutrients were being
hydrolyzed and absorbed, and where microbes might be
most concentrated in the GI tract. If the fish were reliant on
endosymbiont fermentation to gain energy from cellulose
and other refractory polysaccharides, we would expect
SCFA concentrations to be highest in the hindgut region.
Third, we measured the biochemical activity levels of 14
digestive enzymes acting in the gut lumen or along the
brush border of the intestine that reflect the ability of the
fish to hydrolyze substrates commonly encountered in
wood, algae, and detritus (Table 1). Following the method-
ology of Skea et al. (2005), we measured enzyme activities
relative to location along the gut and determined whether
the sources of these enzyme activities were endogenous
(host-produced) or exogenous (produced by microorgan-
isms). This was done by collecting three fractions from the
gut sections: gut wall tissue (endogenous), gut fluid
(enzymes secreted either by the fish or microorganisms),
and microbial extract (exogenous). If, similar to other
xylivorous animals, the catfishes were relying on endos-
ymbionts in their hindgut to digest cellulose, we would
expect refractory polysaccharide-degrading enzyme activi-
ties (e.g., cellulase) to be highest in the microbial extract of
the hindgut region of the GI tract (Table 1). Digestive
enzymes of endogenous origin (i.e., those produced by the
fish, such as amylase, trypsin, and lipase) would be expected
to show a pattern of decreasing activity toward the hindgut
(German 2009a). And fourth, we measured the Michaelis—
Menten (K,,) constants of disaccharidases (maltase, S-glu-
cosidase, and N-acetyl-f-p-glucosaminidase) produced by
the fish (i.e., in gut wall tissue) and by microbes (i.e., in
microbial extract) to determine if the fish were more
efficient in digesting and assimilating disaccharides found in
detritus than were microbes ingested with detritus.

Materials and methods
Fish collection

Ten adult individuals each of Panaque cf. nigrolineatus
“Marafion” and P. nocturnus, and five adult individuals of
Hypostomus pyrineusi were captured by seine and a
backpack electroshocker from the upper Rio Marafion in
northern Peru (4°58.957'S, 77°85.283'W) in August 2006.
Fourteen individuals of Pterygoplichthys disjunctivus were
captured by hand while snorkeling from the Wekiva
Springs complex in north central Florida (28°41.321'N,
81°23.464’'W) in March 2006. Upon capture, fishes were
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Table 1 Digestive enzymes assayed in this study of digestive physiology in loricariid catfishes

Enzyme Location® Substrate Dietary source Fractions assayed®  Expected pattern®  >Fraction?
Amylolytic Lum., cont.  Starch, a-glucans Algae, detritus Fluid, contents Decrease Fluid
Laminarinase Lum., cont. Laminarin Diatoms Fluid, contents Decrease Fluid
Cellulase Lum., cont. Cellulose Wood, algae, detritus Fluid, contents Increase Contents
Xylanase Lum., cont. Xylan Wood, detritus Fluid, contents Increase Contents
Mannanase Lum., cont. Mannan Wood, detritus Fluid, contents Increase Contents
Chitinase Lum., cont.  Chitin Fungi, insects, detritus Fluid, contents Decrease Fluid
Trypsin Lum., cont. Protein Algae, detritus, animals  Fluid, contents Decrease Fluid
Lipase Lum., cont. Lipid Algae, detritus, animals  Fluid, contents Decrease Fluid
Maltase BB, cont. Maltose Algae, detritus Contents, gut wall ~ Decrease Gut wall
p-glucosidase BB, cont. p-glucosides Algae, wood, detritus Contents, gut wall  Increase Contents
p-xylosidase BB, cont. p-xylosides Wood, detritus Contents, gut wall  Increase Contents
f-mannosidase BB, cont. f-mannosides ‘Wood, detritus Contents, gut wall  Increase Contents
N-acetyl-f-p-glucos® BB, cont. N-acetyl-f-p-glucoam  Fungi, insects, detritus ~ Contents, gut wall ~ Decrease Gut wall
Aminopeptidase BB, cont. Dipeptides Algae, detritus, animals  Contents, gut wall ~ Decrease Gut wall

Lum lumen of the intestine, cont. contents (ingesta) of the intestine, BB brush border of the intestine

# Indicates where the enzyme is active

® The portions of gut content or intestinal tissue in which the activity of the enzyme was assayed

¢ This column shows the expected patterns of activity along the GI tracts of the fishes, if they are reliant upon endosymbiotic communities of
microorganisms in their hindguts to digest refractory polysaccharides. For example, “increase” means that the activity of this enzyme should

increase toward the distal intestine of the fish

4 Predictions of which assayed fractions will have higher activity of a particular enzyme. For example, “fluid” means that the activity of that
enzyme is expected to be greater in the intestinal fluid than in the intestinal contents of a given gut region

¢ Complete name of the enzyme is N-acetyl-f3-p-glucosaminidase, and the substrate is N-acetyl-f-p-glucoaminides

placed in coolers of aerated river water and held until
euthanized (up to 2 h). Fishes were euthanized in buffered
water containing 1 g 17! tricaine methanesulfonate (MS-222,
Argent Chemicals Laboratory, Inc., Redmond, WA, USA),
measured [standard length (SL) £ 1 mm], and dissected on
a chilled (~4°C) cutting board. Guts were removed by cut-
ting at the esophagus and at the anus and processed in a
manner appropriate for specific analyses.

Gut pH and redox measurements

Upon dissection, the complete digestive tracts of four indi-
viduals each of P. c¢f. n. “Marafion”, P. nocturnus, and Pt.
disjunctivus were placed on a sterilized, stainless-steel dis-
section tray at ambient temperature (22-25°C) and gently
uncoiled without tearing or stretching. The pH and redox
conditions of the digestive tracts were measured following
Clements et al. (1994) with calibrated pH and redox micro-
electrodes (models PHR-146S and ORP-146, respectively;
Lazar Laboratories Inc., Los Angeles, CA, USA) connected
to a portable pH-redox meter (model 601A, Jenco Inc., San
Diego, CA, USA). Incisions large enough to allow penetra-
tion of the microelectrode tip (~0.25 mm) into the gut fluid
were made in the stomach and intestinal wall, and the pH
and redox conditions were measured immediately after
each incision was made. Overall, pH and redox conditions
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were measured in five sections of the stomach and ten sec-
tions each of the proximal, mid-, and distal intestine of each
individual fish. The mean pH and redox conditions were
then determined for each region of the digestive tract in an
individual fish, and mean values determined for each gut
region for each species. The pH and redox conditions were
not measured in the intestines of H. pyrineusi because this
species was not as abundant as the other taxa and, thus, we
did not capture enough individuals for all of the analyses.

Tissue preparation for digestive enzyme analyses

For fishes designated for digestive enzyme analyses, guts
were dissected out, placed on a sterilized, chilled (~4°C)
cutting board, and uncoiled. The stomachs were excised,
and the intestines divided into three sections of equal
length representing the proximal, mid-, and distal intes-
tine. The gut contents were gently squeezed from each of
the three intestinal regions with forceps and the blunt side
of a razor blade into sterile centrifuge vials. These vials
(with their contents) were then centrifuged at 10,000x g
for 5 min (Skea et al. 2005) in an Eppendorf 5415R desk-
top centrifuge powered by a 12 V car battery via a power
inverter. Following centrifugation, the supernatants (here-
tofore called “intestinal fluid”’) were gently pipetted into a
separate sterile centrifuge vials, and the pelleted gut
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contents and intestinal fluid were frozen in liquid nitrogen.
Gut wall sections were collected from each intestinal
region of each specimen by excising an approximately
30 mm piece each of the proximal, mid-, and distal intes-
tine. These intestinal pieces were then cut longitudinally,
rinsed with ice-cold 0.05 M Tris—HCI buffer, pH 7.5, to
remove any trace of intestinal contents, placed in sterile
centrifuge vials, and frozen in liquid nitrogen. All of the
samples were then transported on dry ice back to the Uni-
versity of Florida where they were stored at —80°C until
analyzed.

The intestinal fluids and pelleted gut contents were
homogenized on ice following Skea et al. (2005). Intestinal
fluids were defrosted, diluted 5-10 volumes in 0.05M
Tris—HCI, pH 7.5, and gently homogenized using a Poly-
tron homogenizer (Brinkmann Instruments, Westbury, NY)
with a 7-mm generator at a setting of 1,100 rpm for 30 s.
The intestinal fluid samples were then stored at —80°C in
small aliquots (100-200 pl) until use. To ensure the rupture
of microbial cells and the complete release of enzymes
from the gut contents, the pelleted gut contents were
defrosted, diluted 3-5 volumes in 0.05 M Tris—HCI, pH
7.5, sonicated at 5 W output for 3 x 20 s, with 40-s inter-
vals between pulses, and homogenized with the Polytron
homogenizer at 3,000 rpm for 3 x 30 s. The homogenized
pelleted gut contents were then centrifuged at 12,000 x g for
10 min at 4°C, and the resulting supernatant designated
“microbial extract”.

Gut wall samples were homogenized according to Ger-
man et al. (2004). Gut wall sections were defrosted, diluted
in 5-100 volumes of 0.3 M mannitol in 0.001 M Hepes/
NaOH (Martinez Del Rio et al. 1995; Levey et al. 1999),
pH 7.0, homogenized with the Polytron homogenizer at
3,000 rpm for 3 x 30s, and centrifuged at 9,400x g for
2 min at 4°C. Following centrifugation, the supernatants
from the pelleted gut contents (microbial extract) and the
gut wall sections were collected and stored in small aliquots
(100-200 pl) at —80°C until just before use in spectropho-
tometric assays of activities of digestive enzymes. The pro-
tein content of the homogenates was measured using
bicinchoninic acid (Smith et al. 1985), as detailed by Ger-
man (2009a). Liver and hepatopancreas tissues were also
prepared for enzymatic analyses as described by German
(2008).

All assays of digestive enzyme activity were carried out
at 25°C, consistent with the measured temperatures (24—
26°C) of the Rio Marafion, in triplicate using the BioRad
Benchmark Plus microplate spectrophotomer and Falcon
flat-bottom 96-well microplates (Fisher Scientific). All pH
values listed for buffers were measured at room temperature
(22°C), and all reagents were purchased from Sigma-Aldrich
Chemical (St. Louis). All reactions were run at saturating
substrate concentrations as determined for each enzyme

with gut tissues from the four species. Each enzyme activity
(Table 1) was measured in each gut region of each individ-
ual fish, and blanks consisting of substrate only and homog-
enate only (in buffer) were conducted simultaneously to
account for endogenous substrate and/or product in the tis-
sue homogenates and substrate solutions (Skea et al. 2005;
German et al. 2009).

Assays of polysaccharide degrading enzymes

Polysaccharidase activities (i.e., activities against starch,
laminarin, cellulose, mannan, and xylan) were measured in
the intestinal fluid and microbial extracts according to the
Somogyi—Nelson method (Nelson 1944; Somogyi 1952).
Polysaccharide substrate was dissolved [starch (2%), lami-
narin (0.5%), carboxymethyl cellulose (0.5%), or mannan
(0.5%)] or suspended (xylan, 0.5%) in 0.8 M sodium citrate
buffer, pH 7.5, containing 0.001% sodium azide. In a
microcentrifuge vial, 50 pl of polysaccharide solution was
combined with 50 pl of a mixture of sodium citrate buffer
and intestinal fluid, tissue, or microbial extract homogenate.
Homogenate volumes ranged from 1 to 30 pl, depending on
the enzyme concentration in the homogenates. The incuba-
tion period varied with substrate: the assays were carried
out for 10 min for starch, 2 h for laminarin, each in a water
bath, and 24 h for each of carboxymethyl cellulose, man-
nan, and xylan, under constant shaking on a rotary shaker in
an incubator. The 24-h incubations also included 1 pl of
protease inhibitor (Sigma P8340) to prevent the degrada-
tion of polysaccharide degrading enzymes by proteases
during the assay period. The incubations were stopped by
adding 20 pl of 1 M NaOH and 200 pl of Somogyi—Nelson
reagent A. Somogyi—Nelson reagent B was added after the
assay solution was boiled for 10 min (see German et al.
2004 for reagent recipes). The resulting solution was
diluted in water and centrifuged at 6,000 g for 5 min. The
reducing sugar content of the solution was then determined
spectrophotometrically at 650 nm, and polysaccharidase
activity was determined from a standard curve constructed
with the respective monomer (i.e., glucose for starch, lami-
narin, and carboxymethyl cellulose; mannose for mannan;
and xylose for xylan). Enzyme activities are expressed in U
(1 pmol reducing sugar liberated per minute) per gram wet
weight of fluid, tissue, or content.

Chitinase activities were measured following German
et al. (2009), but no activity was detected in the four spe-
cies used in this study. In all assays, the background levels
of N-acetyl-glucosamine detected in the blanks (>1 mM)
matched what was measurable in the assay mixtures,
making activity determinations impossible. However, the
measurable N-acetyl-glucosamine in the gut in addition to
measurable N-acetyl-glucosaminidase activities makes it
likely that the fish can utilize chitin as a nutrient source.
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Assays of disaccharidases

Maltase activity was measured in gut wall tissues and pel-
leted gut contents following Dahlqvist (1968) as described
by German (2009a). In a microcentrifuge tube, 10 pl of
56 mM maltose dissolved in 100 mM maleate buffer, pH
7.0, was combined with 10 pl of regional gut wall or micro-
bial extract homogenate. After 10 min, the reaction was
stopped by the addition of 300 pl of assay reagent (Sigma
GAGO?20) dissolved in 1 M Tris—HCI, pH 7.0. The reaction
mixture was incubated for 30 min at 37°C and was stopped
by the addition of 300 pl of 12 N H,SO,. The amount of
glucose in the solution was then determined spectrophoto-
metrically at 540 nm. The maltase activity was determined
from a glucose standard curve and expressed in U (1 pmol
glucose liberated per minute) per gram wet weight of gut
tissue or pelleted contents. The Michaelis—Menten constant
(K,,,) for maltase was determined for gut wall and microbial
extract samples with substrate concentrations ranging from
0.56 to 112 mM.

Tris is known to be an inhibitor of maltase activity
(Dahlgvist 1968), but in higher concentrations (e.g., 1 M;
Levey et al. 1999) than those used in our homogenate buffer
(0.05 M). Nevertheless, to confirm that the different buffers
used for the gut wall (Hepes—mannitol) and microbial
extract (Tris—HCI) homogenates did not directly affect the
K., or activity for maltase, the gut walls and pelleted gut
contents of the proximal intestine of five additional Pt. dis-
Junctivus were homogenized in the opposite buffers: gut
walls in Tris—HCI and pelleted gut contents in Hepes—man-
nitol. For maltase, the different buffers did not produce
different K, (Tris—HCI: 7.72 &+ 1.91 mM; Hepes—mannitol:
7.97 £0.99 mM; t=0.10, P=0.92, df=10) or activity
(Tris—-HCl:  20.74 £ 4.76 U g tissue™'; Hepes—mannitol:
1262 £1.66Ug tissue™ ! r=1.38, P = 0.20, df=10) values
in the microbial extract, or K, (Tris—HCI: 4.98 % 0.72 mM;
Hepes—mannitol: 3.87 £ 0.58 mM; ¢=1.20, P=0.26,
df=10) or activity (Tris—HCl: 2.05 4+ 0.41 U g tissue™;
Hepes—mannitol: 2444037 Ugtissue™!;  =0.70,
P =0.50, df = 10) values in the gut wall homogenates. The
low-concentration Tris—HCI was observed to have little
effect on maltase activity in two previous investigations
(German et al. 2004; German 2009a) in which the gut tis-
sues were homogenized in 0.05 M Tris—HCI buffer. The
different buffers also did not affect the K, and activity lev-
els of the other disaccharidases measured in this study (see
below) and, thus, we can be confident that any differences
in K., and enzyme activity among the gut wall and micro-
bial extract homogenates are not due to the different buffers
used in their homogenization.

The activities of the disaccharidases f-glucosidase,
p-mannosidase, f-xylosidase, and N-acetyl-f-p-glucosa-
minidase (NAG) were measured in gut wall tissues and
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microbial extracts using p-nitrophenol conjugated sub-
strates (Nelson et al. 1999; Xie et al. 2007) dissolved in
0.1 M sodium citrate, pH 7.0. In a microplate well, 90 pl of
11.1 mM substrate (1.33 mM for NAG) was combined with
10 pl of gut wall or microbial extract homogenate and the
reaction was read kinetically at 405 nm for 15 min. The
disaccharidase activities were determined from a p-nitro-
phenol standard curve and expressed in U (1 pmol p-nitro-
phenol liberated per minute) per gram wet weight of gut
tissue or pelleted contents. The K, was determined for gut
wall and microbial extract samples for f-glucosidase and
NAG. The substrate concentrations ranged from 0.1 to
12 mM for f-glucosidase and 0.04-1.2 mM for NAG.

Assays of proteases and lipase

Trypsin activity was assayed in the intestinal fluid and
microbial extract using a modified version of the method
designed by Erlanger et al. (1961), as described by Gawli-
cka et al. (2000). The substrate, 2 mM No-benzoyl-L-argi-
nine-p-nitroanilide hydrochloride (BAPNA), was dissolved
in 100 mM Tris—HCI buffer (pH 7.5) by heating to 95°C
(Preiser et al. 1975; German et al. 2004). In a microplate,
95 ul of BAPNA was combined with 5 pl of homogenate,
and the increase in absorbance was read continuously at
410 nm for 15 min. Trypsin was also assayed in the liver
and hepatopancreas, but tissues homogenates from these
organs were first incubated with enterokinase for 15 min to
activate trypsinogen prior to combining the homogenates
with substrate (German et al. 2004). Trypsin activity was
determined with a p-nitroaniline standard curve and
expressed in U (1 pmol p-nitroaniline liberated per minute)
per gram wet weight of tissue, gut fluid, or microbial
extract.

Aminopeptidase activity was measured in gut wall tis-
sues and microbial extracts according to Roncari and Zuber
(1969), as described by German et al. (2004). In a micro-
plate, 90 pl of 2.04 mM L-alanine-p-nitroanilide HCI dis-
solved in 200 mM sodium phosphate buffer (pH 7.5) was
combined with 10 pl of homogenate. The increase in absor-
bance was read continuously at 410 nm for 15 min and
activity determined with a p-nitroaniline standard curve.
Aminopeptidase activity was expressed in U (1 pmol
p-nitroaniline liberated per minute) per gram wet weight of
gut tissue or pelleted gut contents.

Lipase (nonspecific bile-salt activated E.C. 3.1.1.-)
activities were assayed in the intestinal fluids and microbial
extracts using a modified version of the method designed
by Iijima et al. (1998). In a microplate, 86 pl of 5.2 mM
sodium cholate dissolved in 250 mM Tris—HC1 (pH 7.5)
was combined with 6 pl of homogenate and 2.5 pl of
10 mM 2-methoxyethanol and incubated at room tempera-
ture for 15 min to allow for lipase activation by bile salts.
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The substrate p-nitrophenyl myristate (5.5 pl of 20 mM
p-nitrophenyl myristate dissolved in 100% ethanol) was
then added and the increase in absorbance was read contin-
uously at 405 nm for 15 min. Lipase activity was determined
with a p-nitrophenol standard curve and expressed in U
(1 pmol p-nitrophenol liberated per minute) per gram wet
weight of gut tissue.

The activity of each enzyme was regressed against the
protein content of the homogenates to confirm that there
were no significant correlations between the two variables.
Because no significant correlations were observed, the data
are not reported as U per mg protein.

Gut fluid preparation, gastrointestinal fermentation,
and luminal carbohydrate profiles

Measurements of symbiotic fermentation activity were
based on the methods of Pryor and Bjorndal (2005). Fer-
mentation activity was indicated by relative concentrations
of short-chain fatty acids (SCFA) in the fluid contents of
the guts of the fishes at the time of death. As homogenates
were prepared from the intestinal fluid samples (see “Tissue
preparation for digestive enzyme analyses”), 30 pl of undi-
luted intestinal fluid was pipetted into a sterile centrifuge
vial equipped with a 0.22 pm cellulose acetate filter (Costar
Spin-X gamma sterilized centrifuge tube filters, Coming,
NY) and centrifuged under refrigeration at 13,000xg for
15 min to remove particles from the fluid (including bacte-
rial cells). The filtrates were collected and frozen until they
were analyzed for SCFA and nutrient concentrations.

Concentrations of SCFA in the intestinal fluid samples
from each gut region in each species were measured using
gas chromatography as described by Pryor et al. (2006) and
German et al. (2009). Glucose concentrations were ana-
lyzed in 2 pl of gut fluid using the same glucose content
assay described for the maltase assay above, the only depar-
ture being that there was no pre-incubation with maltose.

To examine the presence of reducing sugars of various
sizes in the intestinal fluids of the fish, 1 pl of filtered intes-
tinal fluid was spotted on to pre-coated silica gel plates
(Whatman, PE SIL G) together with standards of glucose,
maltose, and tri- to penta-oligosaccharides of glucose. The
thin layer chromatogram (TLC) was developed with
ascending solvent (isopropanol/acetic acid/water, 7:2:1 (v/v))
and stained with thymol reagent (Adachi 1965; Skea et al.
2005).

Statistical analyses

Prior to all significance tests, a Levene’s test for equal
variance was performed and residual versus fits plots were
examined to ensure the appropriateness of the data for
parametric analyses. All tests were run using SPSS

(version 11) and Minitab (version 12) statistical software
packages. Amylolytic, laminarinase, cellulase, and xylan-
ase activities were compared between the intestinal fluid
and microbial extract fractions of each gut region in each
species with ¢ test, using a Bonferroni correction. Intraspe-
cific comparisons of total enzymatic activities (intestinal
fluid + microbial extract) and total SCFA concentrations
among the gut regions of each species were made with
ANOVA followed by a Tukey’s HSD with a family error
rate of P = 0.05. The numerical data for the enzyme activi-
ties are presented separately (in figures) from the actual
statistical and P values (in tables). The activities of
maltase, f(-glucosidase, N-acetyl-f-p-glucosaminidase,
p-mannosidase, and aminopeptidase were compared
between the gut wall and microbial extract fractions of
each gut region in each species with ¢ test, using a Bonfer-
roni correction. Similarly, the K, values of maltase, ff-glu-
cosidase, and N-acetyl-f-p-glucosaminidase from the
proximal intestine of the fish were compared between the
gut wall and microbial extract fractions of each species
with ¢ test.

Results
Gut pH and redox conditions

The pH of the digestive tracts of P. c¢f. n. “Marafion”,
P. nocturnus, and Pt. disjunctivus were all neutral, whereas
the redox conditions of the stomach were positive (Pt. dis-
Jjunctivus) or less negative (P. cf. n. “Marafion”and P. noc-
turnus), and the redox conditions of the intestines of all
three species were negative (see Supplemental Table S1 in
online version). Thus, the guts of the three species were
aerobic or slightly anaerobic in the stomach region, and
definitively anaerobic along the intestine.

Polysaccharide degrading enzyme activities

No differences were observed in amylolytic, laminarinase,
or cellulase activities between the intestinal fluid and the
microbial extracts of any species (See Supplemental
Table S2 in online version). However, xylanase activity
was significantly greater in the microbial extracts of the
proximal and mid-intestine of P. nocturnus than in the
intestinal fluids of these regions. Total amylolytic activity
was significantly greater in the proximal intestine than in
the distal intestine of all four species (Table 2; Fig. 2).

Laminarinase activity was significantly higher in the
proximal intestine of all four species than in their mid- or
distal intestines (Table 2; Fig. 2). No laminarinase activity
was detected in the distal intestines of P. nocturnus and
H. pyrineusi.
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Table 2 Summary of ANOVA and 7 test* statistics for intraspecific comparisons of digestive enzyme activities among different regions of the

intestine in four species of loricariid catfishes

Enzyme P. ¢f. n. “Marafion” (6) P. nocturnus (6) Pt. disjunctivus (10) H. pyrineusi (5)
Amylolytic F,17=28.30 F,17;=23.34 Fyp9=8.56 Fy14=51.68

P <0.001 P <0.001 P =0.001 P <0.001
Laminarinase Fy17=17.66 t=2.68 Fyp9=13.02 t=1.96

P <0.001 P =0.023 P <0.001 P =0.086
Cellulase F,17,=0.20 F,1,=0.74 Fhyg=1111 t=3.86

P=0.3818 P =0.492 P <0.001 P=0.018
Xylanase F,7=6.56 F, ;=081 Fy09=3.04 t=3.18

P =0.009 P =0.463 P =0.065 P=0.013
Trypsin Fy17=23.59 F, 7 =208.28 F29=9.03 F,4=36.21

P =0.009 P <0.001 P =0.001 P <0.001
Lipase Fy17=34.80 F,17,=61.79 Fr79=0.74 F,14=22.06

P <0.001 P <0.001 P =0.485 P <0.001

# If only two values were compared, 7 test was used instead of ANOVA. For example, comparisons of laminarinase activities in P. nocturnus and
H. pyrineusi were only made among the PI and MI with 7 test because these species lacked laminarinase activity in their distal intestines. Sample
sizes in parentheses following species names. Actual enzyme activity data are presented in Fig. 2 for amylase, laminarinase, cellulase, and xylan-

ase, and in Supplemental Fig. 1 (see online version) for trypsin and lipase

Pterygoplichthys disjunctivus and H. pyrineusi exhibited
significantly higher cellulase activity in their proximal
intestines than in their mid- or distal intestines (H. pyrin-
eusi lacked detectable cellulase activity in its distal intes-
tine), whereas the two species of Panaque showed no
difference in cellulase activity along the gut (Table 2;
Fig. 2).

Individuals of P. c¢f. n. “Marafion”, Pt. disjunctivus, and
H. pyrineusi possessed significantly greater xylanase activ-
ity in their proximal intestines than in their mid- or distal
intestines (like cellulase, H. pyrineusi lacked detectable
xylanase activity in its distal intestine). Panaque nocturnus,
on the other hand, showed a slight, but insignificant
increase in xylanase activity moving distally along its intes-
tine (Table 2; Fig. 2). No mannanase activity was detected
in any gut region of any species.

Disaccharidase activities

The maltase activity in the microbial extract was signifi-
cantly higher than the activity of this enzyme in the gut wall
of the proximal intestines of all four species (Figs. 3, 4). No
significant differences were observed in the mid-intestine.
The maltase activity in the gut walls of the distal intestines
of the wood-eating taxa was higher than the maltase activ-
ity of the microbial extract, whereas the opposite was true
for the detritivorous Pt. disjunctivus (Figs. 3, 4). All four
species showed decreasing maltase activities in the micro-
bial extract distally in the intestine, whereas all four taxa
showed slight increases in gut wall maltase activity in the
mid-intestine in comparison to the proximal intestine
(Figs. 3, 4).

@ Springer

The f-glucosidase activities in the microbial extracts of
the proximal intestines of P. c¢f. n. “Marafion”, P. noctur-
nus, and Pt. disjunctivus were all significantly higher than
the activities of this enzyme in the gut wall fractions; how-
ever, the opposite was true for H. pyrineusi (Figs. 3, 4).
Only Pt. disjunctivus showed significant differences in
p-glucosidase activity in their mid- and distal intestines,
with the gut wall activity being significantly higher in the
mid-intestine, and the activity in the microbial extract being
higher in the distal intestine. All four species showed
decreasing f-glucosidase activity in the microbial extracts
of their distal intestines (Figs. 3, 4). However, there were
several different patterns for gut wall f-glucosidase activ-
ity: P. nocturnus and H. pyrineusi showed decreasing activ-
ity in their distal intestine, P. c¢f. n. “Marafion” showed
increasing activity toward their distal intestine, and Pt. dis-
Jjunctivus showed a spike in activity in the mid-intestine,
followed by a decrease in the distal intestine.

Panaque nocturnus exhibited significantly greater
N-acetyl-f5-p-glucosaminidase (NAG) activity in the gut
wall of its proximal intestine than in the microbial extract,
whereas none of the other species showed differences in
NAG activity between these two fractions in their proximal
intestines (Figs. 3, 4). The wood-eating taxa all exhibited
significantly higher NAG activity in the gut walls of their
mid-intestines than in the microbial extracts from this gut
region, whereas Pt. disjunctivus showed no differences
between the two fractions. However, P. nocturnus and
Pt. disjunctivus had significantly greater NAG activity in
the gut walls of their distal intestine than in their microbial
extracts, whereas the other species showed no differences
between the two fractions (Figs.3, 4). Panaque cf. n.
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Fig. 2 Total (intestinal fluid + microbial extract) amylolytic, lamina-
rinase, cellulase, and xylanase activities in three regions of the intestine
of Panaque cf. nigrolineatus “Marafion” (Pm), P. nocturnus (Pn),
Pterygoplichthys disjunctivus (Ptd), and Hypostomus pyrineusi (Hp).
Values are means and error bars represent SEM. Intraspecific compar-
isons of each enzyme among gut regions were made with ANOVA fol-
lowed by a Tukey’s HSD with a family error rate of P = 0.05. Regional
activity levels for a specific enzyme and species that share a letter are
not significantly different. No letters above the gut regions for a partic-
ular enzyme indicate that there are no differences in activity among the
intestinal regions for that species. Interspecific comparisons among
species were not made

“Marafion”, P. nocturnus, and Pt. disjunctivus showed
increases in their gut wall NAG activities distally in the
intestine, whereas H. pyrineusi showed a decrease. The
NAG activities of the microbial extracts were variable and
did not follow one pattern (increase or decrease) along the
guts of any of the four species (Figs. 3, 4).

The maltase Michaelis—Menten constants (K,,) from the
wall of the proximal intestines of the fish were generally
lower, although not significantly so, than the K, values of
the microbial extracts from the proximal intestines
(Table 3). However, the K, values of f-glucosidase were
all significantly lower in the fish gut walls than in the
microbial extracts, and the same was generally true for
NAG, except for P. nocturnus (Table 3).

All four species generally possessed significantly greater
f-mannosidase activities in their gut walls than in the
microbial extracts (See Supplemental Table S3 in online
version). f-mannosidase activity increased in the distal
intestine of P. ¢f. n. “Marafion”, decreased in the distal
intestines of P. nocturnus and Pt. disjunctivus, and spiked
in the mid-intestine of H. pyrineusi.

p-xylosidase activity was only observed in the microbial
extracts of the four taxa and was absent in the distal intes-
tines of P. nocturnus, Pt. disjunctivus, and H. pyrineusi
(Supplemental Table S3). Panaque cf. n. “Marafion” showed
significant decreases in f-xylosidase activity distally in its
intestine (ANOVA F,;=10.24, P=0.002). Similarly,
Pterygoplichthys disjunctivus (t=2.57, P =0.019, df=18)
and H. pyrineusi (t = 2.25, P = 0.050, df = 8) showed signifi-
cant decreases in -xylosidase activity in their mid-intestines
compared to their proximal intestines, whereas P. nocturnus
(t=0.84, P =0.421, df = 10) did not.

Protease and lipase activities

Trypsin activities significantly decreased distally in the
intestines of all four species (Table 2, Supplemental Fig. S1
in online version).

All four species generally possessed significantly greater
aminopeptidase activities in their gut walls than in the
microbial extracts (Table 4). Aminopeptidase activities
increased distally in the intestine in the wood-eating taxa,
and spiked in the mid-intestine of Pt. disjunctivus
(Table 4).

Lipase activities significantly decreased distally in the
intestines of all of the wood-eating taxa, but slightly
increased in the distal intestines of Pt disjunctivus
(Table 2, Supplemental Fig. S1).

Enzymatic activities of the hepatopancreas and liver (not
shown) varied by enzyme. No cellulase or xylanase activi-
ties were detected in the hepatpancreas or liver of any spe-
cies, whereas amylolytic activity, laminarinase, trypsin, and
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Fig. 3 Maltase, f-glucosidase,

Panaque cf. nigrolineatus “Marafion”

Panaque nocturnus

and N-acetyl-f-p-glucosamini- 8
dase (NAG) activities in the gut 74
walls and microbial extracts of
the proximal intestine (PI),
mid-intestine (MI), and distal
intestine (DI) of Panaque cf.
nigrolineatus “Marafion” (left
column) and P. nocturnus (right
column). Comparisons were
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lipase were all detected in the hepatopancreas of the fish.
Only amylolytic and lipase activities were detectable in the
liver.

Gastrointestinal fermentation and luminal carbohydrate
profiles

Hypostomus pyrineusi was the only catfish species to show
any significant change in SCFA concentration along the
gut, with significantly higher SCFA concentrations in the
mid-intestine than in the proximal intestine (Table 5). The
trends of SCFA concentrations varied among species, with
Pt. disjunctivus showing an increasing concentration of
SCFAs along the gut, and P. c¢f. n. “Marafion” showing a
decrease, albeit no significant change (Table 5). The TLC
plates (not shown) revealed that all four species had soluble
oligo-, di-, and monosaccharides in the proximal intestine,
and that these concentrations decreased until there were no
soluble sugars remaining in the distal intestine. Similarly,
measurable glucose was observed in the fluid of the proxi-
mal intestine of P. ¢f. n. “Marafion” (2.70 &+ 0.29 mM) and
P. nocturnus (2.86 £ 0.38 mM), but these concentrations
disappeared in the mid- and distal intestine. Only H. pyrin-
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eusi showed measurable glucose in all regions of the intes-
tine and these concentrations decreased, significantly so
(ANOVA: F,,, =845, P<0.001), from the proximal
(4.98 £ 0.43 mM) to the mid- (0.93 £ 0.09 mM) to the dis-
tal (0.73 £ 0.03 mM) intestine. No glucose was detected in
the fluid of any gut region of Pt. disjunctivus.

Discussion

The results of this study support the null hypothesis that
wood-eating catfishes are not reliant upon endosymbionts
to digest refractory polysaccharides in their GI tracts. First,
even though negative redox conditions were observed in
the intestinal fluids of the fishes, the SCFA concentrations
were low and were not significantly greater in the distal
intestine than in the other gut regions. Second, the profiles
of soluble oligosaccharides in the intestinal fluids of the fish
indicate that most absorption of nutrients takes place in
their proximal and mid-intestines, and not in their distal
intestines. Third, the patterns of digestive enzyme activities
indicate that the fish target more soluble components of
their detrital diet rather than refractory polysaccharides:
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Fig. 4 Maltase, f-glucosidase
and N-acetyl-f-p-glucosamini-
dase (NAG) activities in the gut
walls and microbial extracts of
the proximal intestine (PI),
mid-intestine (MI), and distal
intestine (DI) of Pterygoplich-
thys disjunctivus (left column)
and Hypostomus pyrineusi (right
column). Comparisons were
made of the activities of each
enzyme between the gut walls
and microbial extracts of each
gut region in each species with
t test. Following a Bonferroni
correction for each enzyme and
species, differences are consid-
ered significant at P = 0.013
[indicated with an asterisk (*)]
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Table 3 Michaelis—Menten constants (K,,) of disaccharidases in the gut walls and microbial extracts of the proximal intestines of Panaque cf.
nigrolineatus “Marafion” (Pm), P. nocturnus (Pn), Pterygoplichthys disjunctivus (Ptd), and Hypostomus pyrineusi (Hp)

Species Maltase p-glucosidase N-acetyl-f-p-glucosaminidase
Gut Wall Microbial Gut Wall Microbial Gut Wall Microbial
extract extract extract

Pm 1.84+£0.24 2.66+0.39 ¢=1.83 0.041 £0.005 0.708 £0.042 ¢=1594 0.075+£0.004 0.317+£0.063 =3.86
P =0.097 P <0.001 P =0.003

Pn 285+£0.60 433+£031 r=2.20 0.026 £0.004 0976 £0.069 ¢=13.67 0.146+0.018 0.187+0.015 ¢=1.76
P=0.053 P <0.001 P=0.108

Ptd 435+£025 5474153 t=0.56 0.121 £0.018 1.175£0.113 =7.12 0.172+£0.012 0979 £0.237 t=3.40
P =0.587 P <0.001 P =0.008

Hp 2.074+0.19 2.09+£0.13 r=0.10 0.103 £0.025 1.391£0.101 ¢=1236 0.141 £0.027 0.4704+0.095 ¢=3.34
P=0.923 P <0.001 P=0.010

Values are mean (=SEM), and concentrations are in mM. Gut wall and microbial extract constants were compared with ¢ test for each species and
enzyme, and after a Bonferroni correction, are considered significantly different at P = 0.013. Samples sizes were Pm: n=6; Pn: n=6; Ptd: n =6
(gut wall), n = 10 (microbial extract); Hp: n =5

cellulase and xylanase activities were low, variable, and
generally decreased in the distal intestines of the fish; cellu-
lase and xylanase activities were not higher in the microbial
extracts, as would be expected in animals reliant on an

endosymbiotic community; cellulase and xylanase activi-
ties were several orders of magnitude lower than amylolytic
and laminarinase activities; and the K, values of maltase,
p-glucosidase, and N-acetyl-f-p-glucosaminidase (NAG)
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Table 4 Aminopeptidase activ-
ities (U g~!) in the gut walls and
microbial extracts of the proxi-
mal (PI), mid- (MI), and distal
intestines (DI) of Panaque cf.
nigrolineatus “Marafion” (Pm),
P. nocturnus (Pn), Pterygoplich-
thys disjunctivus (Ptd), and
Hypostomus pyrineusi (Hp)

Values are mean (=SEM).
Comparisons of aminopeptidase
activity among the gut walls and
microbial extracts of each gut
region in each species were
made with 7 test. Following a
Bonferroni correction, values
are considered significantly
different at P = 0.017

PI MI DI
Pm (6)
Gut wall 0.223 £ 0.027 0.421 +£0.123 1.309 + 0.361
Microbial extract 0.045 +£0.015 0.069 + 0.011 0.208 + 0.053
t 5.75 2.86 3.02
P <0.001 0.017 0.013
Pn (6)
Gut wall 0.319 £+ 0.057 0.923 +0.194 1.294 4+ 0.236
Microbial extract 0.038 &+ 0.003 0.078 & 0.006 0.210 + 0.025
t 4.93 4.53 4.56
P 0.001 0.001 0.001
Ptd
Gut wall (6) 0.358 £+ 0.029 0.712 4+ 0.089 0.217 +0.052
Microbial extract (10) 0.254 £ 0.045 0.262 £+ 0.030 0.237 £0.053
t 1.64 5.78 0.25
P 0.123 <0.001 0.805
Hp (5)
Gut wall 0.364 £+ 0.059 0.973 £ 0.148 1.066 £ 0.318
Microbial extract 0.111 £0.0010 0.134 +0.029 0.173 +0.052
t 4.21 5.56 2.77
P 0.003 0.001 0.024

Table 5 Total short-chain fatty acid concentrations (mM) in the three gut regions of Panaque cf. nigrolineatus “Marafon”, P. nocturnus, Ptery-

goplichthys disjunctivus, and Hypostomus pyrineusi

Gut Region P. ¢f. n. “Maraiion” P. nocturnus Pt. disjunctivus H. pyrineusi
Proximal 2.95 £0.65 1.50 £0.23 244+ 041 1.00 £ 0.16*
Mid 2.85+1.40 1.94 +£0.39 240 £0.44 3.20 £ 0.79°
Distal 2.10£0.33 1.65 £0.32 3.50 £ 0.68 2.01 4 0.40®
Fy17=0.26 Fy17=0.48 Fy17=1.28 F4 =455
P=0.77 P=0.63 P=031 P=0.03

Values are mean (SEM). Comparisons of SCFA concentrations among gut regions within a species were made with ANOV A, with differences
considered significant at P = 0.05. If significant differences were detected with ANOVA, this was followed by a Tukey’s HSD multiple comparison
test with a family error rate of P = 0.05. Those values sharing a superscript letter are not significantly different. Sample sizes were as follows:
P. cf. n. “Marafion”, n = 6; P. nocturnus, n = 6; Pt. disjunctivus, n = 10; H. pyrineusi, n = 5. Acetate:propionate:butyrate ratios for total SCFAs
were as follows: P. cf. n. “Marafion” = 62:23:15; P. nocturnus = 44:31:25; Pt. disjunctivus = 70:16:14; H. pyrineusi = 52:28:20

were generally lower in the walls of the proximal intestines
of the fish than in the microbial extracts, suggesting that the
fish more efficiently digest soluble disaccharides than do
microbial enzymes ingested with their food. Thus, consis-
tent with our observations of rapid gut transit and poor
cellulose digestibility in these fishes (German 2009b), the
wood-eating loricariid catfishes appear to be more similar,
from a digestive physiology standpoint, to their closely
related detritivorous relatives in the genus Pterygoplichthys
than to other xylivores (e.g., beavers, termites).

The pH levels and redox potentials in the catfish intes-
tines indicated the possibility of supporting a population of
anaerobic microbes, but only in the intestine. Many
loricariids breathe air and have modified stomachs that are
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considered to be air breathing organs (Graham and Baird
1982; Armbruster 1998), which explains why the redox
potentials of the stomachs of the fish in this study were pos-
itive (Pt. disjunctivus) or only slightly negative (P. cf. n.
“Marafion” and P. nocturnus; Table S1). However, the
loricariid stomach is not involved in digestion. For exam-
ple, the stomach of Pr. disjunctivus is usually filled with air,
is alkaline, and ingesta are not held in the stomach for any
length of time; even individuals of this species killed min-
utes after consuming food had already passed the ingesta
into the proximal intestine, bypassing the stomach via a
small groove at its base (DPG, pers. obs.). Redox potentials
measured 1 mm beyond the pyloric sphincter in this study
were already —600 mV, which indicated that even the most
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proximal region of the intestine was not oxygenated by
the fish’s breathing activity. Furthermore, similar to some
detritivorous termites (Kappler and Brune 2002), detritivo-
rous fishes (including wood-eating species) probably con-
sume humic acids, which, in addition to other components
of the intestinal fluid (e.g., bile salts and ingested metals;
Kappler and Brune 2002), can increase the reductive poten-
tial, thus producing negative redox conditions. Either way,
the redox potentials measured in wild-caught fish in this
study suggest that the intestinal environment is highly
reductive.

The concentrations of SCFAs observed in the fishes’
intestines further challenge the hypothesis that wood-eating
catfishes use an endosymbiotic community to ferment
recalcitrant polysaccharides. Fishes that rely on GI fermen-
tation to meet some proportion of their daily energy needs
tend to have >20 mM total SCFAs in their hindguts (Choat
and Clements 1998). The highest concentrations observed
in this study were in the mid-intestine of H. pyrineusi
(3.20£0.79 mM) and were far below concentrations
observed in fishes with active endosymbiotic communities
in their GI tracts (Choat and Clements 1998; Mountfort
et al. 2002). Furthermore, H. pyrineusi was the only species
to show any significant difference in SCFA concentrations
along its gut. Coupled with rapid gut transit, it appears that
some detritivorous/microalgivorous fish species target more
soluble components of their diet, especially protein, and do
not readily digest refractory polysaccharides (Crossman
et al. 2005; German 2009a).

Perhaps the most informative biochemical data gathered
in this study are the patterns of digestive enzyme activities
along the fishes’ intestines. A common pattern in lower ter-
mites, which digest cellulose in their hindgut via an endo-
symbiotic microbial community, is increasing cellulase
activities in the hindgut region (Nakashima et al. 2002; Mo
etal. 2004). Similarly, marine herbivorous fishes with
active hindgut microbial populations have increasing exog-
enously produced enzyme activities (e.g., carrageenase) in
the microbial extracts of their hindguts (Skea et al. 2005).
However, none of the catfish species showed increasing
cellulase activity in the distal intestine and, instead, showed
no pattern (no increase or decrease; P. cf. n. “Marafion” and
P. nocturnus) or decreasing activity (Pt. disjunctivus and
H. pyrineusi) toward the distal intestine. Moreover, the
cellulase activities in the catfish guts were five orders of
magnitude lower than amylolytic activities, and one to two
orders lower than laminarinase activities. Thus, the fish
clearly digest soluble polysaccharides, like starch and lami-
narin, more rapidly than refractory polysaccharides, espe-
cially given the rapid transit time of food through the gut
(German 2009b).

Decaying wood in an aquatic environment will likely
have more nutritious dietary items collecting on the surface

of the wood, and in spaces among fibers, than the wood
itself. The epilithic algal complex (EAC), which is a loose
assemblage of bacteria, cyanobacteria, filamentous green
algae, diatoms, and detritus that grows on hard substrates in
aquatic systems (Hoagland etal. 1982; van Dam et al.
2002; Wilson et al. 2003; Klock et al. 2007; German et al.
2009) contains soluble polysaccharides in the algae (includ-
ing diatoms; Painter 1983) and in exopolymeric substances
produced by microbes (Leppard 1995; Wotton 2004; Klock
etal. 2007). These soluble polysaccharides are likely an
important energy source, not only to grazing species like
Pt. disjunctivus, but also to the “xylivorous” species dig-
ging into the decaying wood. Other EAC-consuming fishes
(e.g., species in the genus Campostoma) have very similar
patterns and magnitudes of amylolytic and laminarinase
activities to the catfishes (German 2009a; German et al.
2009), suggesting that they target similar suites of nutrients
from their foods.

The xylanase activities in P. nocturnus were the only
luminal enzyme activities to be different between the intes-
tinal fluid and the microbial extract, and the activities of
this enzyme slightly increased, albeit not significantly so,
toward the distal intestine of this species. Xylan is a com-
ponent of hemicellulose (Petterson 1984; Breznak and
Brune 1994), but mammals (and probably vertebrates in
general) are not known to possess an endogenous xylanase
or be able to metabolize the monomer of xylan, xylose,
without the aid of intestinal microorganisms (Johnson et al.
2006a, b). Additionally, the catfish species examined in this
study lacked f-xylosidase activity in their gut walls and had
low f-xylosidase activities in their microbial extracts,
which decreased distally in the digestive tract.

Given the low and variable cellulase and xylanase activi-
ties observed in the catfish, and the lack of any consistent
pattern of activity along the guts of the fish, these enzymes
are likely ingested (and produced by microbes ingested)
with detritus rather than produced by a resident endosymbi-
otic community. This stands in contrast to the conclusions
of Nelson et al. (1999), who isolated microbes with cellulo-
lytic capabilities from the guts of loricariid catfishes, sug-
gesting that there was a resident microflora in the fishes’ GI
tracts. However, this does not mean that those microorgan-
isms are endosymbionts digesting wood (Prejs and Blaszczyk
1977; Lindsay and Harris 1980). For example, grass carp,
which eats aquatic macrophytes rich in cellulose and have
cellulase activities in their GI tracts (Lesel et al. 1986; Das
and Tripathy 1991), poorly digests the cellulose component
of their plant diet (Van Dyke and Sutton 1977). This poor
cellulose digestibility is likely due to rapid gut transit
and low levels of microbial fermentation in the grass carp
guts (Stevens and Hume 1998). Additionally, Prejs and
Blaszczyk (1977) observed elevated cellulase activities in
grass carp consuming detritus (i.e., degraded plant material),
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and little to no activity in fishes that had eaten fresh,
non-degraded plant material, suggesting that the cellulase
activities were produced by the microbial community on
the detritus rather than by an endosymbiotic community in
the grass carp GI tracts. Nevertheless, microbes can be cul-
tured from the guts of grass carp (Trust et al. 1979; Lesel
et al. 1986), but these microorganisms do not appear to be
significantly involved in cellulose digestion. Similarly, our
data on wild-caught wood-eating catfishes appear to be
more indicative of ingested cellulases and xylanases than
those of a resident endosymbiotic community. This is espe-
cially true in Pt. disjunctivus and H. pyrineusi, which
showed decreasing cellulase and xylanase activities distally
in their intestines. Furthermore, cellulase and xylanase
activities were not higher in the xylivorous catfish species.
For example, detritivorous Pt. disjunctivus possessed the
highest cellulase activity in its proximal intestine, and
xylivorous P. nocturnus the lowest (German 2008).

The cellulase activities measured in this study are three
orders of magnitude lower than those reported for Panaque
maccus and Pterygoplichthys sp. by Nelson et al. (1999).
However, there are several methodological differences
between this study and that performed by Nelson et al.
First, they used assay conditions designed for ruminant
mammals (pH 5, 40°C), which differ from the conditions in
the fishes’ guts. We designed our assay conditions to reflect
the fishes’ gut pH (pH 7.5; Table S1) and ambient tempera-
tures of their environment (25°C). Second, Nelson et al.
(1999) did not specify in which region of the gut they mea-
sured the enzyme activities. Third, when performing a gen-
eral reducing sugar assay for polysaccharidase activity that
includes intestinal contents (as was done by Nelson et al.
and in this study), it is essential to perform appropriate
blanks to account for background reducing sugars in the
gut, and also for additional substrate that may be a source
of other reducing sugars released during the assay (Skea
et al. 2005; German et al. 2009). Not doing so will result in
an over-estimation of activity levels; Nelson et al. did not
perform this type of blank with their assays. Fourth, the
activities were likely calculated differently between the two
studies. Thus, direct comparisons of enzymatic activity
levels between this study and that of Nelson et al. (1999)
are impossible.

The most striking digestive enzyme activity data sug-
gesting that the catfishes digest mainly soluble components
from their detrital diet comes from the disaccharidase activ-
ities. The Michaelis—Menten constants (K,,) for -glucosi-
dase in the gut walls of the fishes were an order of
magnitude lower than those of the microbial extracts
(Table 3). Although the [-glucosidase activities were
higher in the microbial extracts than in the gut walls of the
proximal intestines of P. c¢f. n. “Marafon”, P. nocturnus,
and Pt. disjunctivus, this may be outweighed by the more
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efficient (lower K,) gut wall f-glucosidase of the fish.
Hypostomus pyrineusi had the double effect of lower K,
and higher activity of -glucosidase in its proximal intestine
gut wall. These results are important because microbes degrad-
ing the cellulose of wood in the river excrete enzymes
extracellularly (Sinsabaugh et al. 1991, 1992; Tank et al.
1998; Hendel and Marxsen 2000) and depend on di- and
monosaccharides [such as cellobiose (a f-glucoside) and
glucose, respectively] to diffuse back to them so that they
can then further digest and assimilate (Allison and Jastrow
2006) the cellulose. The fishes consume wood detritus that
is in this process of degradation and, thus, there are likely
many soluble components, such as cellobiose, in the decay-
ing wood. Because the fishes’ f-glucosidases are more
efficient than those produced by the microbes degrading the
wood, the fish quickly digest and assimilate the cellobiose
in their detrital diet. Additionally, because microbes in the
environment secrete digestive enzymes extracellularly, the
enzymes themselves are also likely on the detritus (Sinsab-
augh et al. 1991, 1992; Tank et al. 1998; Hendel and Marx-
sen 2000), as occurs in soils (Allison 2006; Allison and
Jastrow 2006), and are thus digested within the guts of the
fish. This may explain why the microbial extract enzyme
activities, almost without exception (Tables S2, S3; Figs. 3,
4), decreased distally in the intestines of the fish. This is
especially true for $-glucosidase and stands in contrast with
lower termites, which exhibit increasing f-glucosidase
activities in their hindguts (McEwen et al. 1980). Detritivo-
rous fishes, however, decrease f-glucosidase activity in
their distal intestines (Smoot and Findlay 2000).

The more efficient and higher N-acetyl-f-p-glucosamini-
dase (NAG) activity in the fish gut walls may indicate that
chitin, and its degradation products (i.e., chitobiose), are
important energy and nitrogen sources to the fish. Fungi,
which make cell walls of chitin, are some of the most active
microorganisms in wood degradation and digestion (Swift
et al. 1979; Breznak and Brune 1994; Hendel and Marxsen
2000), and are likely consumed by the fish with wood detri-
tus. We attempted to measure chitinase activity in the guts
of the catfishes, but there was so much background
N-acetyl-glucosamine, which is the monomer of chitin and
the endpoint of chitin digestion, in the fishes’ guts (>1 mM)
that the determination of chitinase activity was impossible
using colorimetric methods. This stands in contrast to other
fishes that consume chitinous arthropods, in which chiti-
nase activity was readily measured (Gutowska et al. 2004;
German etal. 2009). N-acetyl-glucosamine is a usable
energy source for vertebrate animals (Gutowska et al.
2004), and the presence of such large amounts of this com-
pound in the intestines of the fish suggests that chitin diges-
tion proceeds rapidly and, thus, fungi may be an important
dietary item of the fishes. Indeed, microbes in general may
be an important nutrient source to the catfishes, which
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would make lysozyme an important enzyme for nutrient
acquisition in these animals (Krogdahl et al. 2005; Karasov
and Martinez del Rio 2007). Lysozyme is important not
only in bacterial cell wall degradation, but also for the deg-
radation of chitin (Marsh et al. 2001; Krogdahl et al. 2005)
in fungal cell walls. Thus, future studies of digestion in lori-
cariids should take lysozyme activity into account and
should explore non-colorimetric methods for the determi-
nation of chitinase activity (e.g., release of 14C. Marsh et al.
2001; fluorometric substrates; Allison et al. 2009).

Most of the catfish species showed significantly higher
f-mannosidase activities in their gut walls than in the
microbial extracts in all regions of the intestine (Table S3).
It is difficult to speculate what these activities mean for the
fish. Most analyses of mannan, the products of mannan
degradation, and the enzymes involved in mannan diges-
tion, have been aimed at bacteria and fungi (Valaskova and
Baldrian 2006; Moreira and Filho 2008). Mannan and the
monomer, mannose, are components of hemicelluloses in
wood (Petterson 1984; Moreira and Filho 2008). The
detectable activity of -mannosidase in the gut walls of the
fish suggest that, like ff-glucosidase and cellobiose, the fish
may be able to digest the soluble component of mannan
degradation (f-mannosides). This may provide another
example of how the fish efficiently assimilate soluble
components of their detrital diet.

Many animals, including herbivorous and detritivorous
fishes, feed to meet protein requirements (Bowen et al.
1995; Raubenheimer and Simpson 1998; Raubenheimer
etal. 2005) and target protein from their food (Crossman
et al. 2005). The increasing aminopeptidase activities in the
distal intestines of the catfishes likely reflect increased
efforts by the fish to absorb whatever protein is available in
their detrital diet (Fraisse et al. 1981; Harpaz and Uni 1999;
German 2009a), especially given the decreasing microvilli
surface area of the distal intestine in these fishes (German
2009b). Furthermore, the trypsin activities in the loricariid
catfishes are the highest we have measured in a number of
fish taxa using identical methodology (German et al. 2004;
Horn et al. 2006; German 2009a; German et al. 2009). The
lipase activities of the fish followed the expected pattern for
a pancreatic enzyme: decreasing activity distally in the
intestine (German 2009a). However, Pt. disjunctivus
increased its lipase activity distally in its intestine, perhaps
as a lipid-scavenging mechanism.

In conclusion, loricariid catfishes in the genera Panagque
and Hypostomus appear to be detritivores that specialize on
a rather ubiquitous form of coarse detritus in their environ-
ment: degraded wood. The digestive tracts of these fishes,
and of a closely related non-wood-eating detritivore, Pt.
disjunctivus, are clearly geared for the consumption of large
amounts of low-quality food and rapid transit of this food
through the gut. A detrital diet can vary widely in protein,

energy, and organic content (Bowen etal. 1995; Wilson
et al. 2003; Crossman et al. 2005; German 2009b), and
amorphous detritus can contain considerably more ash (up
to 95%; Wilson et al. 2003; Crossman et al. 2005) than a
woody diet (3%; German 2009b). Thus, although the wood-
eating catfishes feed on woody detritus, they consume more
organic matter on a proportional basis than fishes such as
Pt. disjunctivus, which consume more amorphic detritus
(German 2009b). Nevertheless, the digestive enzyme activ-
ities in GI tracts of the loricariid catfishes suggest that these
fish hydrolyze soluble components of ingested food more
efficiently than structural polysaccharides, and the majority
of this hydrolysis takes place in the proximal and mid-
intestine.

These patterns match well with the higher microvilli sur-
face area (German 2009b) and soluble oligosaccharide pro-
files in these regions of the gut. Additionally, though the
guts of the catfishes are highly reductive and hospitable to
anaerobic microbes, the low SCFA concentrations through-
out the fishes’ intestines show that they do not rely on
microbial symbionts to digest structural polysaccharides
via fermentative pathways. Further investigations in these
fishes should emphasize their ability to digest bacteria and
fungi found in detritus.

The inferential nature of this paper, although bolstered
by our other investigations (German 2009b), including sta-
ble isotopic evidence that the fishes’ protein must be com-
ing from non-woody sources (German 2008), leads to a call
for more definitive evidence that these fishes make a living
on soluble degradation products found in detritus. More
quantitative tracer techniques, such as quantum dots
(Whiteside et al. 2009) bound to specific compounds (e.g.,
cellulose vs. f-glucosides), can provide direct evidence of
the assimilation of certain compounds and not of others.
Either way, loricariid catfishes are abundant in the Amazo-
nian basin, and the wood-eating species likely contribute to
nutrient cycling in these habitats by reducing the particle
size of wood from coarse debris to particles on the scale of
1 mm in diameter (German 2009b).
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